Low Voltage

## EasyPact MVS

LV power circuit breakers and switch-disconnectors


## Schneider

# $>$ Do you strain to find a high 

 quality circuit breaker that is simple, flexible, and safe?$>$ Have tight project budgets restricted you from choosing the best technology products?
$>$ Do you need the reach, support and accessibility of a global leader, with the value of a local supplier?




MasterPact MVS has helped our customers with a value system focused on Safety, Simplicity \& Reliability.

Schneider Electric has always believed in customer satisfaction and ensures that we renovate our offers to meet the changing needs of our customers.

## EasyPact MVS

brings more functionalities, options and features which make it more


## EasyPact MVS range

## The easy choice for reliable performance


> Global specialist for ACBs since 1923,introduces yet another range with matchless performance highest priority on protection and safety.
> Versatile array of trip units are available for wide range of the applications. Combining protection and highly accurate display makes your breaker panel more intelligent.
$>$ Ease in installation owing to the single frame size from 800A to 4000A is given.


## EasyPact MVS is...Safe



## Standard safety shutters with locking provision

> The safety shutters automatically block access to contact clusters \& no live parts are accessible. The shutterlocking system is made up of a moving block that can be padlocked.

## 'Ready to close' contact

Ready to close contact offers unmatched safety which prevents unwanted closing of the breaker in various interlocking schemes.
Thanks for its capability to check the following conditions are met:
The circuit breaker is in the OFF position

> The spring mechanism is charged
> A maintained opening order is not present:
> MX energised
> Fault trip
> Remote tripping MN
> Device not completely racked in
> Device locked in OFF position
> Device interlocked with a second device

## Locking arrangements

> Distinct indication of the ACB position in chasis.
> Unique arrangement of position latching at Connected, Test \& Disconnected position.



## EasyPact MVS is...Reliable



Conforms to IEC 60947-2 for circuit breaker \& 60947-3 for switch disconnector functions.
> Tested at renown international laboratories like KEMA

## Low let through energy

$>25 \mathrm{~ms}$ short circuit tripping time of ACBs is fastest in the world.
> Low let through energy ensure minimum stress on Cables/ bus bar and increase the life of cable and installation


Intelligent micro processor based ET trip system
$>$ ET, ETA \& ETV range of trip units ensure protection \& measurement based on electrical distribution network requirement.


## Suitability for Copper \& Aluminium terminations

> Offers flexibility in busbar terminations for Indian environmental conditions

## Fully rated neutral with protection

$>$ All 4 Pole breakers are with fully rated neutral \& can be protected against overload \& short-circuit with settings at 50\%-100\%- OFF

Reliable Accessories
> Continuous rated closing and opening coil ,ensure system reliability Standard unique electrical fault trip indication (SDE)


## EasyPact MVS is...Simple

EasyPact MVS share the same footprint of Masterpact Value System.
> Single Frame size up to 4000A
> Common Height \& Width
$>$ Single pole pitch of 115 mm
> Terminal orientation from Vertical to Horizontal or vise versa as per installation need.
> MDO to EDO Conversion at site Identical
> Accessories for MVS \& NW ACBs


Schneider Electric has got rich experience with installed base of more than 2.5 million Masterpact range of ACBs.

## Choose the leader

800 to 4000A ratings
> Breaking capacity: 50kA
> Suitable for 690V applications
> Complete selectivity with Ics=Icu=Icw (1 s)
> Intelligent ET range of trip system with display
> Fully protected neutral on 4 pole breakers
> Common accessories for complete range
> Conforms to IEC 60947-2 \& 3


# EasyPact MVS <br> Benefits for every customer 

## EasyPact MVSO8 to MVS40

## Panel builders/ contractors

> Single frame size from 800 to 4000A with identical door cut-outs
> Suitable for copper \& Aluminium termination with a single pole pitch of 115 mm
> Terminal orientation can be converted from horizontal to vertical and vice-versa at workshop
> Direct mounting Door frames (escutcheon) without drilling any holes
> Front fitted accessories like undervolt release, shunt release \& closing coil for complete range
> Conversion of manual operated breaker in to electrical operated with single bolt fixing

EasyPact MVS with single frame size,common accessories helps to increase the shop floor efficiency,enabling faster delivery of swith boards.

> Moulded case design ensures high endurance without maintenance
> Intelligent ET range of trip system with thermal memory and display for measurements
> Overload run alarm \& individual LED indications enable fault identification
> Icu=Ics=Icw(1sec)=50kA ensures complete selectivity
> Inbuilt safety shutter \& interlocks
$>$ Designed to provide utmost user safety during installation, during use, and while under maintenance.
> All 4 pole breakers are with fully rated neutral and protected with adjustable settings at OFF - 50\%100\%

EasyPact MVS answers even to the most stringent application with most reliable distribution systems assuring continuity of service


$\qquad$

Installation
recommendations
$\qquad$

Dimensions and connection

Electrical diagrams

Additional characteristics

Catalogue numbers and order form

## Functions and characteristics

EasyPact MVS

## Functions and characteristics

General overview A-2Detailed contentsA-2
Circuit breakers and switch-disconnectors ..... A-4
MVS08 to MVS40 ..... A-4
Identifying ET range of trip system ..... A-6
Overview of functions ..... A-8
ET trip system ..... A-8
ETA trip system ..... A-10
ETV trip system ..... A-12
ET range of trip system ..... A-14
Accessories and test equipment ..... A-14
Connections ..... A-15
Overview of solutions and accessories ..... A-15
Accessories and auxiliaries ..... A-16
Locking ..... A-18
On the device ..... A-18
On the chassis ..... A-19
Indication contacts ..... A-20
Remote operation ..... A-21
Remote ON / OFF ..... A-21
Remote tripping ..... A-23
Source-changeover systems ..... A-24
Mechanical interlocking ..... A-24
Accessories ..... A-25
Installation recommendations ..... B-1
Dimensions and connection ..... C-1
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

Functions
and characteristics

General overview
Detailed contents

This overview describes all the functions offered by EasyPact MVS devices.


Circuit breakers and switch-disconnectors
page A-4
> Ratings:
$>$ EasyPact MVS 800 to 4000 A
> Circuit breakers type N
> Switch-disconnectors type NA
$>3$ or 4 poles
> Fixed or drawout versions
ET trip system page A-8
> 21 basic protection
> 5S selective protection
> 6G selective + earth-fault protection
$>$ Standard long-time rating plug:
$>$ Current setting (A) 0.4 to $1 \times \ln$
ETA trip system with current measurement page A-10
> 2 l basic protection
$>5$ S selective protection
$>6 \mathrm{G}$ selective + earth-fault protection
> Standard long-time rating plug:
$>$ Current setting (A) 0.4 to $1 \times \ln$
$>$ External power-supply module

## ETV trip system with voltage measurement

> 21 basic protection
$>5$ S selective protection
> 6G selective + earth-fault protection
$>$ Standard long-time rating plug:
$>$ Current setting (A) 0.4 to $1 \times \ln$
> External power-supply module

## Connections

> Rear connection:
> Horizontal
> Vertical
> Optional accessories:
> Interphase barriers
> Safety shutters and shutter locking blocks

Locking page A-18
> Pushbutton locking by padlockable transparent cover
> OFF-position locking by keylock
> Chassis locking in disconnected position by keylock
> Chassis locking in connected, disconnected and test positions
> Door interlock (inhibits door opening with breaker in 'connected' or 'test' position


Chassis key lock

Door interlock


Functions
and characteristics

## Circuit breakers <br> and switch-disconnectors MVSO8 to MVS4O



Circuit breaker


Switch disconnector.

| Common characteristics |  |  |
| :---: | :---: | :---: |
| Number of poles |  | 3/4 |
| Rated insulation voltage (V) | Ui | 1000 |
| Impulse withstand voltage (kV) | Uimp | 12 |
| Rated operational voltage (V AC 50/60 Hz) | Ue | 690 |
| Suitability for isolation | IEC 60947-2 | Yes |
| Degree of pollution | IEC 60664-1 | 4 |
| Basic circuit-breaker |  |  |
| Circuit-breaker as per IEC 60947-2 |  |  |
| Rated current (A) | In | at $40^{\circ} \mathrm{C}$ |
| Rating of 4th pole (A) |  |  |
| Sensor ratings (A) |  |  |
| Type of circuit breaker |  |  |
| Ultimate breaking capacity (kA rms) | Icu | 220...440V |
| V AC 50/60 Hz |  |  |
| Rated service breaking capacity (kA rms) | Ics | \% Icu |
| Utilisation category |  |  |
| Rated short-time withstand current (kA rms) | Icw 1s | $220 . .440 \mathrm{~V}$ |
| V AC $50 / 60 \mathrm{~Hz}$ |  |  |
| Rated making capacity (kA peak) | Icm | 220...440 V |
| V AC $50 / 60 \mathrm{~Hz}$ |  |  |
| Breaking time (ms) between tripping order and arc extinction |  |  |
| Closing time (ms) |  |  |
| Switch-disconnector as per IEC60947-3 and Annex A |  |  |
| Type of switch-disconnector |  |  |
| Operational current AC23A |  |  |
| Rated making capacity (kA peak) | Icm |  |
| Rated short-time withstand current (kA rms) | Icw 1s |  |
| Maintenance/Connection/Installation |  |  |
| Service life  <br> C/O cyclesx1000 Mechanical <br>   | with maintenance |  |
|  | without maintenance |  |
|  | without maintenance | 440 V |
| Connection | Horizontal |  |
|  | Vertical |  |
| Dimensions (mm)$(H \times W \times D)$ | Drawout | 3P |
|  |  | 4 P |
|  | Fixed | 3 P |
|  |  | 4P |
| Weight (kg) (approximate) | Drawout | $3 \mathrm{P} / 4 \mathrm{P}$ |
|  | Fixed | $3 \mathrm{P} / 4 \mathrm{P}$ |

Note: * For detailed maintenance instruction, kindly refer user manual


Functions
and characteristics

## Identifying ET range of trip system

EasyPact MVS circuit breakers equipped with ET range of trip system are designed to protect power circuit and connected loads.
Measurement of current and voltage helps users to maintain continuity of service and optimize installation.


## Dependability

Integration of protection functions in an ASIC electronic component used in all trip units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On ET range, measurement functions are managed by an independent microprocessor. Protection functions are independent of measurement functions, ensure system protection even at very low load currents.

## Accessories

Certain functions require the addition of trip unit accessories, described on page A-14.

ET2I: basic protection


Protection:
long time

+ instantaneous
> 6G for selective + earth-fault protection
Type of measurement
> ET for basic
> ETA for "Current"
> ETV for "Current" and "Voltage"


## Trip unit name codes

Type of protection
> 2 l for basic protection
$>5$ S for selective protection

ET5S: selective protection


ET6G: selective + earth-fault protection


Protection:
long time

+ short time
+ instantaneous

Protection:
long time

+ short time
+ instantaneous
+ earth fault

| Protection and measurement functions |  |  |
| :---: | :---: | :---: |
| ET | ETA | ETV |
| > Fault indications <br> > Settings in amperes and in seconds | > I1, I2, I3, IN, learth-fault, and maximeter for these measurements: <br> > Fault indications <br> > Settings in amperes and in seconds | > Incorporates all the rms measurements of ETA trip unit, plus voltage readings: <br> > Calculates the current demand value <br> > "Quickview" function for the automatic cyclical display of the most useful values |
| $21$ | $21$ | $21$ |
| 5S | $5 S$ | $5 \mathrm{~S}$ |
|  | 6G | 6G |

## Functions and characteristics

ET trip unit protect power circuits, under overload \& short-circuit conditions. They are equipped with individual fault trip indication LEDs. ET6G provides earth-fault protection.


1 Long-time threshold and tripping delay.
2 Overload alarm (LED) at 1,125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-fault pick-up and tripping delay.
6 Earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp test, reset and battery test.
10 Indication of tripping cause.
(1) The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current(presence of an overload or not).The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables. The thermal memory assumes a cable cooling time of approximately 20 minutes.
(2) Refer to page D-5 for more details on ZSI.

## Protection

Protection thresholds and delays are set using the adjustment dials.

## Overload protection

True rms long-time protection.
Protects cables (phase and neutral) against overloads
Thermal memory ${ }^{(1)}$ : thermal image before and after tripping.

## Short-time protection

> The short-time protection function protects the distribution system against impedant short-circuits
> The short-time tripping delay can be used to ensure discrimination with downstream circuit breaker
> The $I^{2} t \mathrm{ON}$ and $\mathrm{I}^{2}$ t OFF options enhance discrimination with a downstream protection devices
> Use of ${ }^{2} t$ curves with short-time protection:
$>I^{2}$ t OFF selected: the protection function implements a constant time curve
$>I^{2} t$ ON selected: the protection function implements an It't inverse-time curve up to 10 Ir . Above 10 lr , the time curve is constant

## Earth-fault protection on ET6G trip system

Residual earth fault protection.
Selection of $I^{2} t$ type (ON or OFF) for delay.
A ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors. The purpose of the ground-fault protection function is to eliminate this type of fault.

| Type | Description |
| :--- | :--- |
| Residual | $>$ The function determines the zero-phase sequence current, i.e. the |
|  | vectorial sum of the phase and neutral currents |
|  | $>$ It detects faults downstream of the circuit breaker |

Instantaneous protection
The Instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable. The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of 20 milliseconds.

## Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \mathrm{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2$ ), neutral protection at Ir (4P 4d).
Zone selective interlocking (ZSI)
$\mathrm{A} \mathrm{ZS}^{(2)}$ terminal block may be used to interconnect a number of control units to provide discrimination for short-time and earth-fault protection, without a delay before tripping.

## Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

## Fault indications

LEDs indicate the type of fault:
> Overload (long-time protection Ir)
$>$ Short-circuit (short-time Isd or instantaneous li protection)
$>$ Earth fault (lg)
> Internal fault (Ap)

## Battery power

The fault indicating LEDs are powered by an in-built battery. The fault indication LEDs remain on until the test/reset button is pressed.

## Test

A hand-held test kit may be connected to the test connector on the front to check circuit-breaker operation. For ET6G trip unit, the operation of earth-fault protection can be checked by pressing the test button located above the test connector.

[^0] as standard.


## Functions and characteristics

ETA trip units include all functions offered by ET trip unit. In addition, they also offer measurements, display and current maximeters.


1 Long-time threshold and tripping delay.
2 Overload alarm (LED) at 1,125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-fault pick-up and tripping delay.
6 Earth-fault test button.
7 Long-time rating plug screw.
8 Test connector
9 Lamp test, reset and battery test.
10 Indication of tripping cause.
11 Digital display.
12 Three-phase bargraph and ammeter.
13 Navigation button to view menu contents.
14 Navigation button to change menu
(1) The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current(presence of an overload or not).The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables. The thermal memory assumes a cable cooling time of approximately 20 minutes.
(2) Refer to page D-5 for more details on ZSI.

## "Ammeter" measurements

ETA trip units measure the true (rms) value of currents.
They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within $1.5 \%$ (including the sensors).
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{g}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents $<20 \%$ In. Below 0.1 In , measurements are not significant. Between 0.1 and 0.2 In , accuracy changes linearly from $4 \%$ to $1.5 \%$.

## Protection

Protection thresholds and delays are set using the adjustment dials.

## Overload protection

True rms long-time protection.
Protects cables (phase and neutral) against overloads
Thermal memory ${ }^{(1)}$ : thermal image before and after tripping
Short-time protection
> The short-time protection function protects the distribution system against impedant short-circuits
> The short-time tripping delay can be used to ensure discrimination with downstream circuit breaker
$>$ The $I^{2}$ t ON and I ${ }^{2}$ t OFF options enhance discrimination with a downstream protection devices
> Use of $I^{2} t$ curves with short-time protection:
$>I^{2}$ t OFF selected: the protection function implements a constant time curve
$>I^{2} t$ ON selected: the protection function implements an I $I^{2}$ inverse-time curve up to 10 Ir . Above 10 lr , the time curve is constant

## Earth-fault protection on ETA6G trip system

Residual earth fault protection.
Selection of $I^{2} t$ type (ON or OFF) for delay.
A ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors. The purpose of the ground-fault protection function is to eliminate this type of fault.

| Type | Description |
| :--- | :--- |
| Residual | $>$ The function determines the zero-phase sequence current, i.e. the |
|  | vectorial sum of the phase and neutral currents |
|  | $>$ It detects faults downstream of the circuit breaker |

Instantaneous protection
The Instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable. The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of 20 milliseconds.

## Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2$ ), neutral protection at Ir (4P 4d).
Zone selective interlocking (ZSI)
$\mathrm{A} Z \mathrm{~S}{ }^{(2)}$ terminal block may be used to interconnect a number of control units to provide discrimination for short-time and earth-fault protection, without a delay before tripping.

## Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

## Fault indications

LEDs indicate the type of fault:
> Overload (long-time protection Ir)
> Short-circuit (short-time Isd or instantaneous li protection)
$>$ Earth fault (Ig)
> Internal fault (Ap)

## Battery power

The fault indicating LEDs are powered by an in-built battery. The fault indication LEDs remain on until the test/reset button is pressed.

## Test

A hand-held test kit may be connected to the test connector on the front to check circuit-breaker operation. For ETA6G trip unit, the operation of earth-fault protection can be checked by pressing the test button located above the test connector.

Note: ETA trip units come with a transparent leadseal cover as standard.


[^1]The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions
and characteristics

## Overview of functions <br> ETV trip system

ETV trip units include all the functions offered by ETA. In addition, they measure voltage values.
They also offer trip history \& display tripping cause.


1 Long-time threshold and tripping delay.
2 Overload alarm (LED) at 1,125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-fault pick-up and tripping delay.
6 Earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp test, reset and battery test
10 Indication of tripping cause.
11 Digital display.
12 Three-phase bargraph and ammeter.
13 Navigation button "quick View" (only with ETV)
14 Navigation button to view menu contents.
15 Navigation button to change menu.
(1) The thermal memory continuously accounts for the amount of heat in the cables, both before and after tripping, whatever the value of the current(presence of an overload or not).The thermal memory optimises the long-time protection function of the circuit breaker by taking into account the temperature rise in the cables .The thermal memory assumes a cable cooling time of approximately 20 minutes.
(2) Refer to page D-5 for more details on ZSI.

## "Voltage meter" measurements <br> In addition to the ammeter measurements of ETA

ETV trip units measure and display
> Current demand
> Voltages: phase to phase, phase to neutral, average and unbalanced
The range of measurement is the same as current with ETA, depending of an external power supply module.

## Protection

Protection thresholds and delays are set using the adjustment dials.
Overload protection
True rms long-time protection.
Protects cables (phase and neutral) against overloads
Thermal memory ${ }^{(1)}$ : thermal image before and after tripping
Short-time protection
> The short-time protection function protects the distribution system against impedant short-circuits
> The short-time tripping delay can be used to ensure discrimination with downstream circuit breaker
> The $I^{2}$ t ON and $I^{2}$ t OFF options enhance discrimination with a downstream protection devices
> Use of $I^{2} t$ curves with short-time protection:
$>I^{2}$ t OFF selected: the protection function implements a constant time curve
$>1^{2}$ t ON selected: the protection function implements an $I^{2}$ t inverse-time curve up to 10 lr . Above 10 Ir , the time curve is constant
Earth-fault protection on ETV6G trip system
Residual or source ground return earth fault protection.
Selection of $\mathrm{I}^{2}$ type (ON or OFF) for delay.
A ground fault in the protection conductors can provoke local temperature rise at the site of the fault or in the conductors. The purpose of the ground-fault protection function is to eliminate this type of fault.

| Type | Description |
| :--- | :--- |
| Residual | $>$ The function determines the zero-phase sequence current, i.e. the |
|  | vectorial sum of the phase and neutral currents |
|  | $>$ It detects faults downstream of the circuit breaker |

## Instantaneous protection

The Instantaneous-protection function protects the distribution system against solid short-circuits. Contrary to the short-time protection function, the tripping delay for instantaneous protection is not adjustable. The tripping order is sent to the circuit breaker as soon as current exceeds the set value, with a fixed time delay of 20 milliseconds.
Neutral protection
On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir ( $4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2$ ), neutral protection at Ir (4P 4d).
Zone selective interlocking (ZSI)
$\mathrm{A} \mathrm{ZS}^{(2)}$ terminal block may be used to interconnect a number of control units to provide discrimination for short-time and earth-fault protection, without a delay before tripping.

## Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

## Fault indications

LEDs indicate the type of fault:
> Overload (long-time protection Ir)
> Short-circuit (short-time Isd or instantaneous li protection)
> Earth fault (lg)
> Internal fault (Ap)
Trip history
The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:
> the tripping cause: Ir, Isd, Ii, Ig or Auto-protection (Ap) trips

## Battery power

The fault indicating LEDs are powered by an in-built battery. The fault indication LEDs remain on until the test/reset button is pressed.

## Test

A hand-held test kit may be connected to the test connector on the front to check circuit-breaker operation. For ETV6G trip unit, the operation of earth-fault protection can be checked by pressing the test button located above the test connector.


[^2]Functions
and characteristics

## ET range of trip system Accessories and test equipment



External sensor (CT).


External 24 V DC power supply module.


Lead-seal cover.


Hand-held test kit.

## External sensors

## External sensor for earth-fault protection

The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:
> Residual type earth-fault protection (with 6G trip units)
The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:
> MVS08 to MVS20: TC 400/2000
> MVS25 to MVS40: TC 1000/4000
Voltage measurement inputs ${ }^{(1)}$
As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC.

## External 24 V DC power-supply module

The external power-supply module makes it possible to use the display (ETA and ETV trip systems) even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue).

## Characteristics

> Power supply:
$>110 / 130,200 / 240,380 / 415 \vee \mathrm{AC}(+10 \%-15 \%)$
> 24/30, 48/60, 100/125 V DC (+20 \% -20 \%)
$>$ Output voltage: $24 \mathrm{VDC} \pm 5 \%, 1 \mathrm{~A}$
> Ripple < 1 \%
$>$ Dielectric withstand : 3.5 kV rms between input/output, for 1 minute
$>$ Overvoltage category: as per IEC 60947-1 cat. 4

## Spare parts

Lead-seal covers
A lead-seal cover controls access to the adjustment dials
When the cover is closed:
> It is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed
$>$ The test connector remains accessible
$>$ The test button for the earth-fault protection function remains accessible
Characteristics
> Transparent cover for all trip units
Spare battery
A battery supplies power to the LEDs identifying the tripping causes. The healthiness of the battery to be checked periodically. A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

## Test equipment

## Hand-held test kit

The hand-held mini test kit may be used to:
> Check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
> Power source: standard LR6-AA battery

## Connections

Overview of solutions and accessories

Two types of connection are available:
> Horizontal rear connection
> Vertical rear connection
The solutions presented are similar in principle for all
EasyPact MVS fixed and drawout devices.

Rear connection
Horizontal


Vertical


Mixed


Simply turn a horizontal rear connector 90 to make it a vertical connector.

## Interphase barriers EIP

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not. For EasyPact MVS devices, they are installed vertically between rear connection terminals. They are not compatible with spreaders.

## Safety shutters VO

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.
The shutter-locking system is made up of a moving block (optional device) that can be padlocked (padlock not supplied). The block:
> Prevents connection of the device
> Locks the shutters in the closed position
For EasyPact MVS08 to MVS40
A support at the bottom of the chassis is used to store the blocks when they are not used:
> 2 blocks for MVS08 to MVS40

[^3]
## Accessories and auxiliaries

$\qquad$

| Type of accessory | EasyPact MVS08 to MVS40 |  |
| :---: | :---: | :---: |
|  | Fixed breaker <br> Rear connection | Drawout breaker Rear connection |
| Interphase barriers |  <br> Optional | Optional |
| Safety shutters |  | Standard |
| Safety shutters locking blocks |  | Optional |
| Door interlock |  |  <br> Optional |
| Pushbutton locking device | Optional | Optional |
| OFF position locking | Optional | Optional |
| "Disconnected" position locking |  | (0) <br> Optional |
| ON/OFF indication contacts(OF) | Standard | Standard |
| Additional ON/OFF indication contacts(OF) | Optional | Optional |
| "Fault trip" indication contact(SDE) | Standard |  |


| Type of accessory | EasyPact MVS08 to MVS40 |  |
| :---: | :---: | :---: |
|  | Fixed breaker <br> Rear connection | Drawout breaker Rear connection |
| "Connected, disconnected, test position" indication contact(CE,CD,CT) |  | Optional |
| "Ready to close" contact(PF) | Optional | Optional |
| Escutcheon(CDP) | Standard | Standard |
| Mechanical operation counter(CDM) | Optional | Optional |
| Escutcheon blanking plate |  <br> Optional | 長 <br> Optional |
| Auxiliary terminal shield(CB) |  | Optional |
| Transparent cover (IP54) |  | 发 <br> Optional |

1 Reset button for mechanical trip indication.
2 OFF pushbutton.
3 OFF position lock.
4 Door interlock.
5 ON pushbutton
6 Spring charge indication.
7 Pushbutton locking.
8 Contact position indication.
9 Operation counter.


Access to pushbuttons protected by transparent cover.


Pushbutton locking using a padlock.


OFF position locking using a keylock.


Door interlock.


## Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:
> Three padlocks (not supplied)
$>$ Lead seal
> Two screws
Device locking in the OFF position by keylocks VSPO
The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
> Using keylocks (one or two keylocks, supplied)
Keys may be removed only when locking is effective (Profalux or Ronis type locks). The keylocks are available in any of the following configurations:
> One keylock
> One keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux).


Profaulx


Ronis

## Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.
Automatic spring discharge before breaker removal DAE
This option discharges the springs before the breaker is removed from the chassis.

## On the chassis



1 Door interlock.
2 Keylock locking.
3 Padlock locking.
4 Position indicator.
5 Chassis front plate (accessible with cubicle door closed).
6 Racking-handle entry.
7 Release button
8 Racking-handle storage.

"Disconnected" position locking by padlock.

"Disconnected" position locking by keylock.
"Connected", "disconnected" and "test" position racking interlock
The "connected", "disconnected" and "test" positions are shown by an indicator and are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.
"Disconnected" position locking by padlocks or keylocks VSPD
Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:
> Using padlocks (standard), up to three padlocks (not supplied)
> Using keylocks (optional), one or two different keylocks are available
Profalux and Ronis keylocks are available in different options:
> One keylock
> Two identical key locks - one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux).

## Padlock

Circuit breaker in "disconnected" position.


Insert the shackle (max. diameter 5 to 8 mm ) of the padlock(s).


Pull out the tab.


The crank connot be inserted.


## Keylock

Circuit breaker in "disconnected" position.


Remove the key(s)



The crank cannot be inserted.


## Functions

and characteristics

Indication contacts are available


ON/OFF indication contacts (OF) (rotary type).

"Fault-trip" indication contact (SDE).


CE, CD and CT"connected/ disconnected/test" position carriage switches.

## ON/OFF indication contacts OF

Indication contacts indicate the ON or OFF position of the circuit breaker:
> Rotary type changeover contacts directly driven by the mechanism for EasyPact MVS. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached

| OF |  |  | MVS |
| :---: | :---: | :---: | :---: |
| Supplied as standard |  |  | 1 (4 C/O) |
| Optional contact |  |  | 1 (4 C/O) |
| Breaking capacity (A) | Standard |  | Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| p.f.: 0.3 | V AC | 240/380 | 10/6 ${ }^{(1)}$ |
| AC12/DC12 |  | 480 | $10 / 6{ }^{(1)}$ |
|  |  | 690 | 6 |
|  | VDC | 24/48 | 10/6 ${ }^{(1)}$ |
|  |  | 125 | 10/6 ${ }^{(1)}$ |
|  |  | 250 | 3 |

(1) Standard contacts: 10 A ; optional contacts: 6 A .
"Fault-trip" indication contacts SDE
Circuit-breaker tripping due to a fault is signalled by:
> A red mechanical fault indicator (reset)
> One changeover contact SDE
Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard.

| SDE |  |  | MVS |  |
| :--- | :--- | :--- | :--- | :--- |
| Supplied as standard |  |  |  | 1 |
| Breaking capacity (A) | Standard |  |  | Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| p.f.: 0.3 |  | V AC | $240 / 380$ | 5 |
| AC12/DC12 |  | 480 | 5 |  |
|  |  |  | 690 | 3 |
|  |  | V DC | $24 / 48$ | 3 |
|  |  | 125 | 0.3 |  |
|  |  |  | 250 | 0.15 |

## "Connected", "disconnected" and "test" position carriage switches

## CE, CD \& CT

Three series of optional auxiliary contacts are available for the chassis:
> Changeover contacts to indicate the "connected" position CE
> Changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
> Changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected

## Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

|  |  |  | MVS |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Contacts |  |  | CE/CD/CT |  |  |
| Maximum number | Standard |  |  | 3 | 3 |
| Breaking capacity (A) | Standard |  |  | 3 |  |
| p.f.: 0.3 |  | V AC | 240 | 8 |  |
| AC12/DC12 |  |  | 380 | 8 |  |
|  |  |  | 480 | 8 |  |
|  |  |  | 690 | 6 |  |
|  |  |  | V DC | $24 / 48$ | 2.5 |
|  |  |  | 125 | 0.8 |  |
|  |  |  | 250 | 0.3 |  |

## Remote operation <br> Remote ON / OFF

A point-to-point solution for remote operation of EasyPact MVS


Note: An opening order always takes priority over a closing order.
If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.

The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:
> An electric motor MCH equipped with a "springs charged" limit switch contact CH
> Two voltage releases:
> A closing release XF
> An opening release MX
Optionally, other function may be added:
> A "ready to close" contact PF
A remote-operation function is generally combined with:
> Device ON / OFF indication OF
> "Fault-trip" indication SDE

Wiring diagram of a point-to-point remote ON / OFF function


## Remote operation <br> Remote ON / OFF



Electric motor MCH for
EasyPact MVS.



MX voltage releases.


XF voltage release.

"Ready to close" contacts PF.

## Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.
The electric motor MCH is equipped as standard with a limit switch contact CH that signals the "charged" position of the mechanism (springs charged).

| Characteristics |  |  |
| :--- | :--- | :--- |
| Power supply VAC 50/60 Hz | $100 / 130-200 / 240-380 / 415$ |  |
|  | V DC | $24 / 30-48 / 60-100 / 125-200 / 250$ |
| Operating threshold | 0.85 to 1.1 Un |  |
| Consumption (VA or W) | 180 |  |
| Motor overcurrent | 2 to 3 In for 0.1 s |  |
| Charging time | Maximum 4 s |  |
| Operating frequency | Maximum 3 cycles per minute |  |
| CH contact | 10 A at 240 V |  |

## Voltage releases XF and MX

Their supply can be maintained or automatically disconnected.

## Closing release XF

The XF release remotely closes the circuit breaker if the spring mechanism is charged.
Opening release MX
The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained.

| Characteristics | XF | MX |
| :--- | :--- | :--- | :--- |
| Power supply | V AC 50/60 Hz | $24-48-100 / 130-200 / 250-277-380 / 480$ |
|  | V DC | $12-24 / 30-48 / 60-100 / 130-200 / 250$ |
| Operating threshold | 0.85 to 1.1 Un | 0.7 to 1.1 Un |
| Consumption (VA or W) | Hold: 4.5 | Hold: 4.5 |
|  | Pick-up: $200(200 \mathrm{~ms})$ | Pick-up: $200(200 \mathrm{~ms})$ |
| Circuit-breaker response time at Un | $70 \mathrm{~ms} \pm 10$ | $50 \mathrm{~ms} \pm 10$ |

## "Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:
$>$ The circuit breaker is in the OFF position
$>$ The spring mechanism is charged
> A maintained opening order is not present:
> MX energised
> Fault trip
> Remote tripping MN
> Device not completely racked in
> Device locked in OFF position
$>$ Device interlocked with a second device

| Characteristics |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Maximum number |  |  |  | 1 |
| Breaking capacity (A) | Standard |  |  | Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| p.f.: 0.3 |  | V AC | $240 / 380$ | 5 |
| AC12/DC12 |  | 480 | 5 |  |
|  |  |  | 690 | 3 |
|  |  | V DC | $24 / 48$ | 3 |
|  |  | 125 | 0.3 |  |
|  |  |  | 250 | 0.15 |

## Remote tripping



Instantaneous voltage releases MN
The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between $35 \%$ and $70 \%$ of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit breaker closing is enabled again when the supply voltage of the release returns to $85 \%$ of its rated value.

| Characteristics |  |  |  |
| :--- | :--- | :--- | :--- |
| Power supply | V AC 50/60 Hz | $24-48-100 / 130-200 / 250-380 / 480$ |  |
|  | V DC | $24 / 30-48 / 60-100 / 130-200 / 250$ |  |
| Operating threshold | Opening | 0.35 to 0.7 Un |  |
|  | Closing | 0.85 Un |  |
| Consumption (VA or W) | Pick-up: $200(200 \mathrm{~ms})$ | Hold: 4.5 |  |
| MN consumption | Pick-up: $200(200 \mathrm{~ms})$ | Hold: 4.5 |  |
| with delay unit (VA or W)    <br> Circuit-breaker response time at Un $90 \mathrm{~ms} \pm 5$   |  |  |  |

## MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

| Characteristics |  |  |  |
| :--- | :--- | :--- | :--- |
| Power supply | Non-adjustable | $100 / 130-200 / 250$ |  |
| V AC 50-60 Hz /DC | Adjustable | $48 / 60-100 / 130-200 / 250-380 / 480$ |  |
| Operating threshold | Opening | 0.35 to 0.7 Un |  |
|  | Closing | 0.85 Un |  |
| Delay unit consumption | Pick-up: $200(200 \mathrm{~ms})$ | Hold: 4.5 |  |
| Circuit-breaker response time at Un | Non-adjustable | 0.25 s |  |
|  | Adjustable | $0.5 \mathrm{~s}-0.9 \mathrm{~s}-1.5 \mathrm{~s}-3 \mathrm{~s}$ |  |

## EasyPact MVS Communication System

EasyPact MVS communication hardware options facilitate following option on
Modbus RS485 /Ethernet TCP IP Network:
> Remote breaker Status ON/OFF/TRIP
> Remote ACB Status connected / test / disconnected
> Remote Control ON / OFF
> Electrical interlocking facility.
Alternatively, digital I/O`s of Power Meters can also be used for above parameters.
These all parameters can be monitored and controlled at centralized Power SCADA.

Functions and characteristics

## Source-changeover systems Mechanical interlocking



Interlocking of two EasyPact circuit breakers using cable.

Interlocking of two EasyPact MVS or up to three EasyPact MVS devices using cables
For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side. The interlocked devices may be fixed or drawout, three-pole or fourpole, and have different ratings.
Interlocking between two devices
This function requires:
$>$ An adaptation fixture on the right side of each device
> A set of cables with no-slip adjustments
$>$ The use of a mechanical operation counter CDM is compulsory
The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm . Interlocking between three devices
This function requires:
> A specific adaptation fixture for each type of interlocking, installed on the right side of each device
> Two or three sets of cables with no-slip adjustments
$>$ The use of a mechanical operation counter CDM is compulsory
The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm . Installation
The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:
> Cable length: 2.5 m
$>$ Radius of curvature: 100 mm
> Maximum number of curves: 3

| Possible combinations of "Normal" and "Replacement" source circuit breakers |
| :--- |
| "Normal N" |
| MVS08 to MVS40 |
| Ratings 800...4000A |
| "Replacement" R |
| Possible combinations of three device MVS08 to MVS40 <br> MVS08 to MVS40  <br> Ratings 800...4000A MVS08 to MVS40 |

All combinations of two or three EasyPact MVS devices are possible, whatever the rating of the devices.

## Accessories



## Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.


## Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.
This option is compulsory for all the source-changeover systems.


Escutcheon CDP with blanking plate.


Transparent cover CP for escutcheon.

## Transparent cover for escutcheon CP

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10. It adapts to drawout devices.

## Installation recommendations

EasyPact MVSInstallation recommendationsContents

Functions and characteristics ..... A-1
Operating conditions ..... B-2
Installation in switchboard ..... B-3
Door interlock catch ..... B-5
Control wiring ..... B-6
Power connection ..... B-7
Recommended busbars drilling ..... B-9
Temperature derating Power dissipation ..... B-10
Dimensions and connection ..... C-1
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

## Installation

recommendations

## Operating conditions

EasyPact MVS circuit breakers have been tested for operation in industrial atmospheres. It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.


## Ambient temperature

EasyPact MVS devices can operate under the following temperature conditions:
> The electrical and mechanical characteristics are stipulated for an ambient temperature of $-5^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$>$ Circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$
Storage conditions are as follows:
$>-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for a Easypact MVS device without its control unit
$>-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the control unit


Altitude
At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

| Altitude $(\mathrm{m})$ | 2000 | 3000 |
| :--- | :--- | :--- |
| Impulse withstand voltage uimp (kV) | 12 | 11 |
| Rated insulation voltage (Ui) | 1000 | 900 |
| Maximum rated operationnal | 690 | 590 |
| voltage $50 / 60 \mathrm{~Hz} \mathrm{Ue} \mathrm{(V)}$ | 1000 | 890 |
| Rated current 40 C | $1 \times \ln$ | $0.99 \times \ln$ |

Intermediate values may be obtained by interpolation.


## Electromagnetic disturbances

EasyPact MVS devices are protected against:
> Overvoltages caused by devices that generate electromagnetic disturbances
> Overvoltages caused by atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
> Devices emitting radio waves (radios, walkie-talkies, radar, etc.)
> Electrostatic discharges produced by users
EasyPact MVS devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:
> IEC 60947-2, appendix F
The above tests guarantee that:
> No nuisance tripping occurs
> Tripping times are respected

## Installation in switchboard

## Possible positions



Power supply
EasyPact MVS devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.


Mounting the circuit-breaker
It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm ) This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.
EasyPact devices can also be mounted on a vertical plane using the special brackets.


[^4]
## Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material A. Metal barriers through which a conductor passes must not form a magnetic loop.


A : Non magnetic material.


## Door interlock catch

Door interlock VPEC
Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

| Type | (1) | (2) |
| :--- | :--- | :--- |
| MVS08-40 (3P) | 215 | 215 |
| MVS08-40 (4P) | 330 | 215 |

Breaker in "connected" or "test" position Door cannot be opened


Breaker in "disconnected" position
Door can be opened


Note: Dimensions are in mm .

## Control wiring

## Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages ( $12,24,48 \mathrm{~V}$ ), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.
Recommended maximum cable lengths (meter).

|  |  | 12 V |  | 24 V |  | 48 V |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MN | U source $100 \%$ | - | - | 58 | 35 | 280 | 165 |
|  | U source $85 \%$ | - | - | 16 | 10 | 75 | 45 |
|  | U source $100 \%$ | 21 | 12 | 115 | 70 | 550 | 330 |
|  | U source $85 \%$ | 10 | 6 | 75 | 44 | 350 | 210 |

Note: The indicated length is that of each of the two wires.

## 24 V DC power-supply module

## External 24 V DC power-supply module (F1-, F2+)

$>$ Do not connect the positive terminal (F2+) to earth
> The negative terminal (F1-) can be connected to earth
$>$ A number of trip units can be connected to the same 24 V DC power supply (the consumption of a trip unit is approximately 100 mA )
$>$ Do not connect any devices other than a trip unit
$>$ The maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together
> The 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together
> The technical characteristics of the external 24 V DC power-supply module are indicated on page A-14.

Note: Wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

## Power connection

## Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.
For this, make the connections as follows:
> Extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections:
> For a single cable, use solution B opposite
$>$ For multiple cables, use solution $C$ opposite
> In all cases, follow the general rules for connections to busbars:
> Position the cable lugs before inserting the bolts
$>$ The cables should firmly secured to the framework E

## Busbars connections

The busbars should be suitably adjusted to ensure that the connection points are positioned on the terminals before the bolts are inserted B
The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight C. (This support should be placed close to the terminals).


## Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.
Maximum distance A between busbar to circuit breaker connection and the first busbar
support or spacer with respect to the value of the prospective short-circuit current.

| Isc $(\mathrm{kA})$ | 30 | 50 | 65 |
| :--- | :--- | :--- | :--- |
| Distance A $(\mathrm{mm})$ | 350 | 300 | 250 |



1 Terminal screw factory-tightened to 16 Nm .
2 Breaker terminal
3 Busbar.
4 Bolt.
5 Washer.
6 Nut.

## Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.
These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1)
Examples


| Tightening torques <br> $\varnothing(\mathrm{mm})$ | (mm) <br> Nominal | Drilling | Tightening torques $(\mathrm{Nm})$ |
| :--- | :--- | :--- | :--- |
| with grower or flat washers |  |  |  | | Tightening torques $(\mathrm{Nm})$ |
| :--- |
| with contact or corrugatec |
| washers |

Busbar drilling
Examples


Isolation distance


Busbar bending
When bending busbars maintain the radius indicated below(a smaller radius would cause cracks).


Dimensions (mm)

| e | Radius of curvature $r$ <br> Min | Recommended |
| :--- | :--- | :--- |
| 5 | 5 | 7.5 |
| 10 | 15 | 18 to 20 |

# Recommended busbars drilling EasyPact MVSO8 to MVS40 



## MVS40



Vertical rear connection MVS08 to MVS32


## MVS40




## Temperature derating Power dissipation

## Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars.
For Ti greater than 60 C , consult us.
Ti: temperature around the circuit breaker and
its connection.

| Version | Drawout |  | Fixed |  |
| :---: | :---: | :---: | :---: | :---: |
| Connection | Rear horizontal | Rear vertical | Rear horizontal | Rear vertical |
| Temp. Ti | $40^{\circ} \mathrm{C} 45^{\circ} \mathrm{C} 50^{\circ} \mathrm{C} 55^{\circ} \mathrm{C} 60^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C} 45^{\circ} \mathrm{C} 50^{\circ} \mathrm{C} 55^{\circ} \mathrm{C} 60^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C} 45^{\circ} \mathrm{C} 50^{\circ} \mathrm{C} 55^{\circ} \mathrm{C} 60^{\circ} \mathrm{C} 40^{\circ} \mathrm{C} 45^{\circ} \mathrm{C} 50^{\circ} \mathrm{C} 55^{\circ} \mathrm{C} 60^{\circ} \mathrm{C}$ |  |
| MVS (50kA) |  |  |  |  |
| MVS08N | 800 | 800 | 800 | 800 |
| MVS10N | 1000 | 1000 | 1000 | 1000 |
| MVS12N | 1250 | 1250 | 1250 | 1250 |
| MVS16N | 1600 | 1600 | 1600 | 1600 |
| MVS20N | 200019001800 | 20001900 | 2000 - 1920 | 2000 |
| MVS25N | 25002450 | 2500 | 2500 | 2500 |
| MVS32N | $3200 \quad 310030002900$ | 3200 | 3200 | 3200 |
| MVS40N | 4000 3900 37503650 | $4000 \quad 3900$ | $40003900 \quad 3800$ | 4000 |

Input /Output current path resistance for Fixed \& Draw out type circuit breakers
The resistance between input/output is the value measured per pole (cold state ).
Power dissipation $\mathrm{P}=3 \mathrm{RI}^{2}$


3P Draw out Type ACB

| Current Rating | Input/Output current path resistance in $(\mu \mathrm{ohm})$ |  |
| :--- | :--- | :--- |
|  | Drawout | Fixed |
|  | 36 | 19 |
| MVS08N | 36 | 19 |
| MVS12N | 36 | 19 |
| MVS16N | 36 | 19 |
| MVS20N | 30 | 13 |
| MV25N | 19 | 13 |
| MVS32N | 13 | 8 |
| MVS4ON | 11 | 8 |

# Dimensions and connection 

## EasyPact MVS

Dimensions and connectionContents
Functions and characteristics ..... A-1
Installation recommendations ..... B-1
MVS08 to MVS32 circuit breakers ..... C-2
Fixed 3/4-poles device ..... C-2
Drawout 3/4-poles device ..... C-4
MVS40 circuit breakers ..... C-6
Fixed 3/4-poles device ..... C-6
Drawout 3/4-poles device ..... C-8
Accessories ..... C-10
External modules ..... C-11
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

Dimensions
and connection

MVSO8 to MVS32 circuit breakers
Fixed $3 / 4$-poles device

## Dimensions



Mounting on base plate or rails


Mounting detail


## Safety clearances



| Insulated |
| :--- | :--- | :--- | :--- |
| parts |$\quad$| Metal |
| :--- |
| parts |$\quad$| Energised |
| :--- |
| parts |



Dimensions
and connection

MVSO8 to MVS32 circuit breakers Drawout 3/4-poles device

Dimensions

(*) Disconnected position.
Mounting on base plate or rails
Mounting detail



## Safety clearances



Door cutout

(1) Without escutcheon
(2) With escutcheon.

Note: $X$ and $Y$ are the symmetry planes for a 3-pole device.


Dimensions
and connection

MVS40 circuit breakers
Fixed $3 / 4$-poles device

## Dimensions



## Mounting on base plate or rails



Mounting detail


## Safety clearances



Door cutout



F: Datum.
(2) With escutcheon.

Note: $X$ and $Y$ are the symmetry planes for a 3-pole device
$A\left(^{*}\right)$ An overhead clearance of 110 mm is required to remove the arc chutes.

Connections
Horizontal rear connection


Vertical rear connection


Dimensions
and connection

MVS40 circuit breakers
Drawout 3/4-poles device

## Dimensions


(*) Disconnected position.

Mounting on base plate or rails


Mounting detail


Safety clearances


Door cutout


|  | Insulated <br> parts | Metal <br> parts | Energised <br> parts |
| :--- | :--- | :--- | :--- |
| A | 0 | 0 | 0 |
| B | 0 | 0 | 60 |

a: Datum.

(1) Without escutcheon.
(2) With escutcheon.

Note: $X$ and $Y$ are the symmetry planes for a 3-pole device.
The safety clearances take into account the space required to remove the arc chutes.

## Connections

Horizontal rear connection


Detail


Vertical rear connection


View A detail.


Dimensions
and connection

## Accessories

Rear panel cutout (drawout devices)
MVS08 to MVS40
Rear view


Escutcheon

## EasyPact MVS

Fixed device


Drawout device


## External modules

Connection of auxilary wiring to terminal block



One conductor only per connection point.

External power supply module (AD)


Delay unit for MN release


Dimensions and connection

## External modules

External sensor for external neutral

## Dimensions

400/2000 A (MVS08 to MVS20)


High: 162 mm .

1000/4000 A (MVS25 to MVS40)


High: 162 mm .

1000/4000 A (MVS25 to MVS40)


## Electrical diagrams

## EasyPact MVS

## Electrical diagrams

Contents

Functions and characteristics ..... A-1
Installation recommendations ..... B-1
Dimensions and connection ..... C-1
EasyPact MVS08 to MVS40 ..... D-2
Fixed and drawout devices ..... D-2
EasyPact MVS ..... D-4
Earth-fault protection/Neutral protection ..... D-4
Zone selective interlocking ..... D-5
24 V DC external power supply AD modute ..... D-6
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

The diagram is shown with circuits
de-energised, all devices open, connected
and charged and relays in normal position.

## Power

## ET/ETA/ETV trip system

Remote operation


Note: V1...VN Voltage connections are available in ETV trip system.


| ET trip system |  |
| :---: | :---: |
| UC1 | UC2 |
| Z ${ }^{5}$ |  |
| Z3 ${ }_{\text {Z }} \mathrm{Z} 4$ |  |
| Z1 O Z O | $\circ$  <br> 1 T1 <br> 1  |


| ETA/ETV trip system |  |  |
| :---: | :---: | :---: |
| UC1 | UC2 | UC3 |
| < O |  | $\mathrm{F}_{\mathrm{F} 2+}{ }^{\text {+ }}$ |
| $\begin{array}{ll}\circ & \circ \\ \mathrm{Z3} & \mathrm{Z} 4 \\ \\ & \\ \\ \end{array}$ | $\stackrel{\text { O }}{\text { T3 }}$ O ${ }^{\text {O }}$ | ${ }^{\mathrm{VN}}{ }^{\circ}$ |
| $\begin{array}{cc}\circ \\ \text { Z1 } & \text { Z2 } \\ \\ \text { Z2 }\end{array}$ | $\begin{array}{ll}\text { O1 } & \text { O } \\ \text { T1 }\end{array}$ | $\delta_{\text {F1- }}{ }^{-}$ |

## ET/ETA/ETV trip system

UC1
Z1-Z5 zone selective interlocking Z1=ZSI OUT SOURCE
Z2=ZSI OUT ; Z3 = ZSI IN SOURCE Z4 = ZSI IN ST (short time) Z5 $=$ ZSI IN GF (earth fault)

UC2 :
T1, T2, T3, T4=external neutral

UC3:
F2+, F1-: external 24 V DC power supply
VN : external voltage connector (must be
connected to the neutral CT with a 3P circuit breaker equipped with ETV trip system)

## Remote operation

SDE: Fault-trip indication contact (supplied as standard)
MN: Undervoltage release
MX: Shunt release (standard for Electrical breaker)
XF:Closing release (standard for Electrical breaker)
PF:"Ready to close"contact
MCH: Gear motor (standard for Electrical breaker)


External sensor (CT).

## External sensors ( Neutral CT)

External sensor for earth-fault protection
The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:

1. Residual type earth-fault protection(ET/ETA/ETV 6G trip system)

The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:

1. MVS08 to MVS20: CT 400/2000;
2. MVS25 to MVS40: CT 1000/4000;


| Indication contacts |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF4 | OF3 | OF2 | OF1 | OF14 | OF13 | OF12 | OF11 |
| ${ }_{44}{ }^{\circ}$ | ${ }_{34}{ }^{\circ}$ | $\bigcirc_{24}{ }^{\circ}$ | $\bigcirc{ }_{14}$ | ${ }_{144}^{\circ}$ | $\delta_{134}^{0}$ | $\delta_{124}^{0}$ | $\delta_{114}^{\circ}$ |
| ${ }_{42}{ }^{\circ}$ | ${ }_{32}{ }^{\circ}$ | ${ }_{22}^{\circ}$ | ${ }_{12}^{\circ}$ | $\delta_{142}^{\circ}$ | $\delta_{132}$ | $\delta_{122}^{\circ}$ | $\delta_{112}$ |
| $\square_{41}{ }^{\circ}$ | ${ }_{31}{ }^{\circ}$ | $\sigma_{21}$ | $\delta_{11}^{\circ}$ | $\delta_{141}$ | $\delta_{131}^{\circ}$ | $\delta_{121}^{\circ}$ | $\delta_{111}$ |
| Standard |  |  |  | Optional |  |  |  |



## Indication contacts

| OF4 | Standard |
| :--- | :--- |
| OF3 | ON/OFF |
| OF2 | Indication contacts |
| OF1 |  |$\quad$| OF 14 | Optional |
| :--- | :--- |
| OF 13 | ON/OFF |
| OF 12 | Indication contacts |
| OF 11 |  |

## Chassis contacts

| CD3 | CD2 | CD1 | CE3 | CE2 | CE1 | CT3 | CT2 | CT1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




Optional

## Chassis contacts

| CD3 Disconnected | CE3 Connected | CT3 Test |
| :--- | :--- | :--- | :--- |
| CD2 Position | CE2 Position | CT2 Position |
| CD1 Contacts | CE1 Contacts | CT1 Contacts |

External sensor (CT) for residual earth-fault protection
Connection of current-transformer secondary circuit for external neutral
EasyPact MVS equipped with a ET/ETA/ETV 6G:
> Shielded cable with 2 twisted pairs
> T1 twisted with T2
> Maximum length 4 meters
$>$ Cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$
> Recommended cable: Belden 9552 or equivalent
For proper wiring of neutral CT, refer to instruction
Bulletin 48041-082-03 shipped with it.
Do not remove factory-installed jumper between T1 and T2 unless neutral CT is connected. If supply is via the top, follow the shematics. If supply is via the bottom, control wiring is identical; for the power wiring, H 1 is connected to the source side, H 2 to the load side.
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.


## Neutral protection

> Three pole circuit breaker:
$>$ Neutral protection is impossible
> Four pole circuit breaker:
$>$ The current transformer for external neutral is not necessary

## Zone Selective Interlocking

## Zone selective interlocking

Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.
A pilot wire interconnects a number of circuit breakers
equipped with ET range of trip system, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.
Fault 1.
Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3 .

## Fault 2.

Circuit breakers $A$ and $B$ detect the fault. Circuit breaker $A$ receives a signal from $B$ and remains closed for the full duration of its tripping delay set to 0.3 . Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

Wiring
> Maximum impedance: $2.7 \Omega / 300 \mathrm{~m}$
$>$ Capacity of connectors: 0.4 to $2.5 \mathrm{~mm}^{2}$
$>$ Wires: single or multicore
> Maximum lenght: 3000 m
> Limits to device interconnection:
$>$ The common ZSI - OUT (Z1) and the output ZSI - OUT (Z2) can be connected to a maximum of 10 upstream device
> A maximum of 100 downstream devices may be connected to the common ZSI - IN (Z3) and to an input ZSI - IN CR ( Z4) or GF (Z5)


## EasyPact MVS

24 V DC external power supply
AD module

> The 24 V DC external power-supply (AD module) for the ET Trip system (F1-F2+) is not required for basic protections LSIG
$>$ With ETA/ETV, it is recommended to connect 24 V DC external power-supply (AD module) to the Micrologic control unit (F1-F2+) in order to keep available the display and the energy metering, even if Current < $20 \%$ In


#### Abstract

Note: In case of using the 24 V DC external power supply (AD module), maximum cable length between 24 VDC (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters.

The internal voltage taps are connected to the bottom side of the circuit breaker.


## Connection

The maximum length for each conductor supplying power to the trip unit is 10 m .
Do not ground F2+, F1-, or power supply output:
$>$ The positive terminal (F2+) on the trip unit must not be connected to earth ground
$>$ The negative terminal (F1-) on the trip unit must not be connected to earth ground
$>$ The output terminals (- and +) of the 24 V DC power supply must not be grounded
Reduce electromagnetic interference:
> The input and output wires of the 24 V DC power supply must be physically separated as much as possible
> If the 24 V DC power supply wires cross power cables, they must cross perpendicularly. If this is not physically possible, the power supply conductors must be twisted together
> Power supply conductors must be cut to length. Do not loop excess conductor

# Additional characteristics 

EasyPact MVS

## Additional characteristics

Contents
Functions and characteristics ..... A-1
Installation recommendations ..... B-1
Dimensions and connection ..... C-1
Electrical diagrams ..... D-1
Tripping curves ..... E-2
Catalogue numbers and order form ..... F-1

Additional
characteristics

ET range of trip system - 2 I


ET range of trip system - 5S, 6G


Earth fault protection (ET range of trip system - 6G)

(1)

| $\lg =\ln x \ldots$ | A | B | C | D | E | F | G | H | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\ln \leqslant 400 \mathrm{~A}$ | 0.3 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
| $400 \mathrm{~A}<\ln \leqslant 1000 \mathrm{~A}$ | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
| $\ln \geqslant 1250 \mathrm{~A}$ | 500 | 640 | 720 | 800 | 880 | 960 | 1040 | 1120 | 1200 |

# Catalogue numbers and order form 

EasyPact MVS

Catalogue numbersContents
Functions and characteristics A-1
Installation recommendations ..... B-1
Dimensions and connection ..... C-1
Electrical diagrams ..... D-1
Tripping curves ..... E-2
Nomenclature ..... F-2
EasyPact MVS ..... F-3
Connection ..... F-3
ET Trip System \& accessories ..... F-4
Remote operation ..... F-5
Chassis locking and accessories ..... F-7
Clusters ..... F-8
Circuit breaker locking and accessories ..... F-9
Mechanical interlocking for source changeover ..... F-10
Indication contacts ..... F-11
Instructions ..... F-12
Order form ..... F-13

Catalogue numbers and order form


Example 1 MVS32N4NW6L
MVS
EasyPact
MVS




Note: In case of different coil voltages of MCH, XF, MX. Kindly contact our nearest sales office.

## EasyPact MVS Connection

| Connection |
| :--- |
| Fixed circuit breakers |
| Rear connection (vertical or horizontal mounting) / Replacement kit (3 or 4 parts) |

Catalogue numbers
and order form

ET trip units \& accessories


| ET2I protection relay for MVS | 65477 |
| :--- | :--- |
| ET5S protection relay for MVS | 65478 |
| ET6G protection relay for MVS | 67479 |
| ETA2I protection relay for MVS | 65577 |
| ETA5S protection relay for MVS | 65578 |
| ETA6G protection relay for MVS | 65579 |
| ETV21 protection relay for MVS | MVS15501 |
| ETV5S protection relay for MVS | MVS15502 |
| ETV6G protection relay for MVS | MVS15503 |



External sensors
External sensor for earth-fault protection (TCE) / 1 part

|  | Sensor rating | 400/2000 A | 34035 |
| :---: | :---: | :---: | :---: |
|  |  | 1000/4000 A | 34036 |

External power supply module (AD) / 1 part


| $24-30$ V DC | 54440 |
| :--- | :--- |
| $48-60$ V DC | 54441 |
| $100-125$ V DC | 54442 |
| $110-130$ V AC | 54443 |
| $200-240$ V AC | 54444 |
| $380-415$ V AC | 54445 |



## EasyPact MVS

## Remote operation



Catalogue numbers
and order form

Remote operation
Undervoltage release MN


Undervoltage release (1 part)

| AC $50 / 60 \mathrm{~Hz}$ DC | $24 / 30 \mathrm{~V}$ DC, 24 V AC |
| :---: | :---: |
|  | $48 / 60$ V DC, 48 V AC |
|  | 100/130 V AC/DC |
|  | 200/250 V AC/DC |
|  | 380/480 V AC |
| Terminal block (1 part) | For fixed circuit breaker |


| 33668 |
| :--- |
| 33669 |
| 33670 |
| 33671 |
| 33673 |
| 47074 |
| 47849 |



Installation manual
|MVS21736

## MN delay unit (1 part)

|  |  | R (non-adjustable) | Rr (adjustable) |
| :---: | :---: | :---: | :---: |
| AC 50/60 Hz | 48/60 V AC/DC |  | 33680 |
| DC | 100/130 V AC/DC | 33684 | 33681 |
|  | 200/250 V AC/DC | 33685 | 33682 |
|  | 380/480 V AC/DC |  | 33683 |
| Installation manual |  |  | MVS21736 |

## EasyPact MVS

Chassis locking and accessories


Catalogue numbers
and order form

## Clusters


$\qquad$

| Clusters |  |
| :--- | :--- |
|  | 1 disconnecting contact cluster for chassis (see table <br> below) (part 1) |


| Table : number of clusters required for the different chassis models |
| :--- |
| Chassis rating (A) EasyPact <br> MVS(3P) EasyPact <br> MVS(4P)   <br>  N NA N NA <br> 800 12 12 16 16 <br> 1000 12 12 16 16 <br> 1250 12 12 16 16 <br> 1600 12 12 16 16 <br> 2000 12 12 16 16 <br> 2500 24 24 32 32 <br> 3200 36 36 48 48 <br> 4000 42 42 56 56 |



## EasyPact MVS <br> Circuit breaker locking and accessories

Circuit breaker locking
Pushbutton locking device / 1 part

|  |  |  |  | 48536 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Installation manual |  | \|MVS21736 |
| OFF position locking / 1 part |  |  |  |  |
|  |  | By Profalux keylocks |  |  |
|  |  | 1 lock with 1 key + adaptation kit |  | 64928 |
|  |  | 2 locks 1 keys + adaptation kit |  | 64929 |
|  |  | Profalux 1 lock+ 1 key (without adaptation kit) |  | 42888 |
|  |  | Profalux 2 locks + 1 key (without adaptation kit) |  | 42878 |
|  |  | Adaptation kit (without key locks) |  | 64925 |
|  |  |  |  |  |
|  |  | 1 lock with 1 key + adaptation kit |  | 64931 |
|  |  | 2 locks 1 keys + adaptation kit |  | 64932 |
|  |  | Ronis 1 lock +1 key (without adaptation kit) |  | 41940 |
|  |  | Ronis 2 locks + 1 key (without adaptation kit) |  | 41950 |
|  |  | Adaptation kit (without key locks) |  | 64925 |
|  |  | Installation manual |  | MVS21736 |
| Mechanical operation counter / 1 part |  |  |  |  |
|  | Operation counter CDM | Operation counter CDM |  | \| 48535 |
|  | Installation manual |  |  | \|MVS21736 |
| Escutcheon and accessories / 1 part |  |  |  |  |
|  | Cover <br> Blanking plate |  | Fixed | Drawout |
|  |  | Escutcheon | 48601 | 48603 |
|  |  | Transparent cover (IP 54) | - | 48604 |
|  |  | Escutcheon blanking plate | 48605 | 48605 |
|  |  | Installation manual |  | \|MVS21736 |
| Front cover (3P/4P)/1 part |  |  |  |  |
| \% | MVS Front cover |  |  | \|MVS21808 |

Spront cover

|  | Spring charging handle |  |  | 47940 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Installation manual |  |  |  | MVS21736 |
| Arc chute / 1 part |  |  |  |  |  |
|  |  |  | 3P |  | 4P |
|  | Type N/NA | $3 \times$ | MVS21807 | $4 \times$ | MVS21807 |
|  | Installation manual |  |  |  | MVS21736 |

Catalogue numbers
and order form

## Mechanical interlocking for source changeover

Mechanical interlocking for source changeover
Interlocking of 2 devices using cables ${ }^{(1)}$


Choose 2 adaptation sets ( 1 for each device +1 set of cables)
1 adaptation fixture for EasyPact MVS fixed devices
1 adaptation fixture for EasyPact MVS drawout devices
47926
1 set of 2 cables
33209
(1) Can be used with any combination of EasyPact MVS, fixed or drawout devices.


## EasyPact MVS

Indication contacts

| Indication contacts |  |  |  |
| :---: | :---: | :---: | :---: |
| ON/OFF indication contacts (OF) / 12 parts |  |  |  |
|  | 1 additional block of 4 contacts |  | 47887 |
|  | Wiring | For fixed circuit breaker | 47074 |
|  |  | For drawout circuit breaker | 47849 |
|  | Installation manual |  | MVS21736 |
| "Ready to close" contact (1 max.) / 1 part |  |  |  |
|  | 1 changeover contact (5 A - 240 V ) |  | 47080 |
|  | Wiring | For fixed circuit breaker | 47074 |
|  |  | For drawout circuit breaker | 47849 |
|  | Installation manual |  | MVS21736 |
| "Connected, disconnected, test position" indication contact (carriage switches) / 1 part |  |  |  |
|  | Changeover contacts 6A-240 V |  | 33170 |
|  | Installation manual |  | MVS21736 |
| Auxiliary terminals for chassis alone |  |  |  |
|  | 3 wire terminal (1 part) |  | 47849 |
|  | 6 wire terminal (1 part) |  | 47850 |
|  | Jumpers (10 parts) |  | 47900 |

Instructions

| EasyPact MVS User Manual (English) | MVS21734 |
| :--- | :--- |
| Fixed \& drawout circuit breaker | MVS21735 |
| Circuit breaker accessories | MVS21736 |
| Chassis accessories | MVS21737 |
| Interlocking of EasyPact MVS devices | MVS21738 |

## EasyPact MVS

|  |  |
| :--- | :--- |
| Order ref no: | $\square$ |
|  | $\square$ |
| Date: |  |
| Product ref no: |  |
|  |  |

## EasyPact MVS

## Circuit breaker and Switch-disconnectors Customer Order form



Trip System functions:
21 : Basic protection (long time + inst.)
5 S : Selective protection (long time + short time + inst.)
6G : Selective + earth-fault protection
(long time + short time + inst. + earth-fault)


[^5]
# EasyPact MVS range of <br> ACBs are complimented by EasyPact CVS range of MCCBs 

EasyPact CVS is packed with world class features and designed especially to meet technical \& commercial needs of customers


16 to 630A in $3 / 4$ pole versions
> Conforms to IEC 60947-1 \& 2
> Breaking Capacities: 25kA (16-250A), 36kA (16A-630A), 50kA (400\&630A)
> Complete range with Service breaking capacity, Ics=100\% Ultimate breaking capacity, Icu
> Two frame sizes for complete range helps is faster design \& delivery of distribution systems
$>$ Thermal magnetic trip units (16-630A) \& electronic trip units ( 400 \& 630A)
$>$ Fault current limitation technology helps to reduce the thermal stresses \& thus increases the life of cables and installation
> Front accessible common snap fit auxiliaries simplifies the installation procedures \& reduces inventory costs
> Suitability for Isolation ensures that the circuit is isolated from the remainder of the system thus the personnel carry out work with complete safety
> Class 2 front face reinforces safety with unique modular construction where the auxiliaries are isolated from the main current path
> MCCBs can be pad locked \& with key lock option ensuring safety and better control on installation
> High electrical \& mechanical endurances
> Unique electronic ground fault protection device with individual LEDs for system healthiness \& fault trip indications

## EasyPact CVS also available in 800A frame size in $3 / 4$ Pole versions

> Breaking Capacities: 35kA \& 50kA with Ics=100\% Icu
> Line-load reversibility
> Available in thermal magnetic version with both adjustable over-load \& short circuit settings

## Make the most of your energy ${ }^{\text {SM }}$

## Schneider Electric India Pvt. Ltd.

## Corporate office

9th Floor, DLF Building No.10, Tower C, DLF Cyber City,
Phase II, Gurgaon - 122002, Haryana
Tel: 01243940400 , Fax: 01244222036
www.schneider-electric.co.in
Customer Care Centre :


[^0]:    Note: ET trip control units come with a transparent leadseal cover

[^1]:    Note: All current-based protection functions require no auxiliary source

[^2]:    Note: All current-based protection functions require no auxiliary source.
    The test / reset button resets maximeters, clears the tripping indication and tests the battery.

[^3]:    Note: EasyPact MVS circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment.

[^4]:    Mounting on rails

[^5]:    Notes:
    Customer can provide only the reference no. of the product for the listed references. Kindly refer to product catalogue for list of references.
    Customer to fill this order form for non-listed references.
    All breakers will be provided with 1 OF ( 4 c/o contacts), 1SDE (trip contact), Escutcheon (Panel sealing frame) as standard.
    All draw-out type devices will be supplied with Chassis \& safety shutter.
    For Electrical operated devices, indicate the voltage ratings of MCH,XF \& MX
    Refer to product catalogue for available voltage ratings of MCH/XF/MX/MN \& AD Module
    The orientation of customer connecting terminals can be changed at site from Horizontal to vertical or vice-versa.

